Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters.
نویسندگان
چکیده
3-Hydroxypropionate (3HP) is an important compound in the chemical industry, and the polymerized 3HP can be used as a bioplastic. In this review, we focus on polyesters consisting of 3HP monomers, including the homopolyester poly(3-hydroxypropionate) and copolyesters poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxypropionate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate), poly(4-hydroxybutyrate-co-3-hydroxypropionate-co-lactate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate-co-4-hydroxybutyrate-co-lactate). Homopolyesters like poly(3-hydroxybutyrate) are often highly crystalline and brittle, which limits some of their applications. The incorporation of 3HP monomers reduces the glass transition temperature, the crystallinity, and also, at up to 60 to 70 mol% 3HP, the melting point of the copolymer. This review provides a survey of the synthesis and physical properties of different polyesters containing 3HP.
منابع مشابه
Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)
The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the...
متن کاملPoly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials.
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the b...
متن کاملBiosynthesis, biodegradation, and application of poly(3- hydroxybutyrate) and its copolymers - natural polyesters produced by diazotrophic bacteria
A.P. Bonartsev, V.L. Myshkina, D.A. Nikolaeva, E.K. Furina, T.A. Makhina, V.A. Livshits, A.P. Boskhomdzhiev, E.A. Ivanov, A.L. Iordanskii, and G.A. Bonartseva Laboratory of biochemistry of nitrogen fixation, A.N.Bach's Institute of Biochemistry, Russian Academy of Sciences, Leninskii prosp. 33, 119071 Moscow, Russia Laboratory of transport phenomena in polymers, Joint Institute of Chemical Phys...
متن کاملAn Alternative Method for Synthesis of Thermally Stable Aromatic Polyesters Containing Schiff Base Unites
In this paper, an efficient method for synthesis of aromatic polyesters containing schiff base units is described by preparation of two polyesters. These polyesters have been prepared by the reaction of terephthaloyl dichloride on Schiff bases derived from p-hydroxybenzyldehyde and 4,4-diamino diphenyl ether, 4,4-diamino diphenyl methane. The Polymers were characterized by IR, CHNS, thermal...
متن کاملMultiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei.
Haloferax mediterranei is able to accumulate the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with more than 10 mol% 3-hydroxyvalerate (3HV) from unrelated carbon sources. However, the pathways that produce propionyl coenzyme A (propionyl-CoA), an important precursor of 3HV monomer, have not yet been determined. Bioinformatic analysis of H. mediterranei genome indicated that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 76 15 شماره
صفحات -
تاریخ انتشار 2010